Driving DataOps Culture with LinkedIn DataHub

Your data is not changing slowly, so why should your metadata?

LinkedIn DataHub was open-sourced to enable other organizations to harness the power of metadata and unleash excellent DataOps practices. Doing DataOps well requires bringing together multiple disciplines of data science, data analytics, and data engineering into a cohesive unit. However, this is complicated, because there are a wide variety of data tools that are in use by these different tribes. Shirshanka, who founded and architected DataHub at LinkedIn, will describe its journey in enabling DataOps use-cases on top of the metadata platform. He will also showcase the latest integrations and features in the tool and share the roadmap for the project.

shirshanka-das-acryl.png

Shirshanka Das, Co-Founder & CTO @ Acryl Data

My mission is to make engineers productive with data, ethically. I am a technical lead in the Data team at LinkedIn. I like solving large scale challenges in distributed data systems. I've built several data infrastructure projects at LinkedIn, some of which are open source: Apache Helix, Espresso and Databus.

I'm involved in the following projects aimed at simplifying the big data management space: Apache Gobblin (incubating), LinkedIn DataHub, Apache Pinot (incubating) and Dali.

What is the cost to attend and watch the virtual sessions?

Data Team Summit is always free and open for all to attend.

What is Data Teams Summit?

This year, we've taken the peer-to-peer empowerment of data teams one step further and formally transformed DataOps Unleashed into Data Teams Summit to better reflect our focus on the teams and individuals running, managing, and monitoring data pipelines.

Data Teams Summit is an annual, full-day virtual conference, led by data rockstars at future-forward organizations about how they're establishing predictability, increasing reliability, and creating economic efficiencies with their data pipelines.

Who comes to Data Teams Summit?

Data professionals and experts including data engineers, administrators, architects, analysts, AI/ML professionals, and relevant data technology leadership.

Join us for sessions on:

  • Data teams & best practices
  • Data pipelines & applications
  • DataOps observability
  • Data quality & data governance
  • Operations observability
  • MLOps
  • Data modernization & architecture
  • Biz/FinOps observability
Headline Sponsor
Diamond Sponsor
Gold Sponsor
Gold Sponsor
Gold Sponsor
Gold Sponsor
Silver Sponsor

Interested in speaking at Data Teams Summit or participating as a sponsor?

Please contact mike@solutionmonday.com.